(WORK SIX OF THE SEVEN PROBLEMS: TWENTY POINTS EACH)

1.) a.) Compute the determinant of
$$\mathbb{M} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & -2 & -5 \end{bmatrix}$$

b.)
$$\mathbb{M}^{\mathbf{t}} =$$

$$\mathbb{A} = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix} \qquad \mathbb{B} = \begin{bmatrix} 1 & 4 \\ 2 & 1 \\ 1 & 0 \end{bmatrix} \qquad \mathbb{C} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \qquad \mathbb{D} = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix}$$

c.) Compute $\mathbb{A} \mathbb{B}$.

d.) Compute $\mathbb{C} + \mathbb{D}$.

- 2.) | A | = 4 | B | = 2 | C | = -1
 - a.) | A B |=
 - b.) | A B C |=
 - c.) | A B⁻¹ |=
 - d.) If \mathbb{B} is a 2 x 2 matrix, \mid 2 \mathbb{B} \mid =
 - e.) | A^t |=
 - e.) Describe a method to compute the inverse of a matrix.

3.) For $\vec{F}(\vec{r}) = 3$ \hat{y} $\hat{i} + 6$ \hat{x}^2 \hat{y} $\hat{j} + 12$ \hat{z} \hat{k} consider the path integral \vec{F} $d\vec{r}$ from [0,0,0] to [4,2,0] along the path $y = \sqrt{x}$ in the x-y plane.

- a.) Give a parameterization of the path with expressions for x, y, z, dx, dy and dz.
- b.) Evaluate the integral.

Name: _____

4.) The classic eigenvalue problem: $M \vec{v} = 1 \vec{v} = \vec{v}$

Given $\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, find the eigenvalues and eigenvectors.

5.) A thin circular disk with uniform surface charge density—and radius R lies in the x-y plane centered on the origin. The goal is to compute the electric field due to the charge at points on the z axis. The following equation is used to compute the electric field due to the charge distribution.

$$\vec{E}(\vec{r}_P) = \int \frac{k \ dq}{r_{SP}^2} \, \hat{r}_{SP} \qquad \qquad \lambda \ d\ell \qquad \qquad \text{charg e spread along a line} \\ dq_s = \sigma \ dA \qquad \qquad \text{charg e spread over an area} \\ \rho \ dV \quad \text{charge spread throughout a volume}$$

- a.) What are your choices for integration variables?
- b.) Give an expression for \vec{r}_s =

- c.) $\vec{r}_p =$
- d.) $\vec{r}_{sp} =$
- e.) \hat{r}_{sp} =
- f.) Give the limits of integration for each integration variable.

6.) The electric field is computed as the negative gradient of a scalar potential function. $\vec{E} = -\vec{V}(\vec{r})$. In spherical coordinates, $V(r,\theta,\phi) = A r^{-2} \cos\theta$. Compute $\vec{E} = -\vec{V}(\vec{r})$.

- 7.) Given $\vec{F}(x, y, z) = (x + xy) \hat{i} (1/2) y^2 \hat{j} + z \hat{k}$.
- a.) Compute \vec{F} .
- b.) Compute $\circ \vec{F} + \hat{n} dA$ by any method for the surface of a sphere of radius 2 centered at [1,1,1].

eXtra-Credit (not worth the trouble !)

(ONLY TWO POINTS EACH)

- X1.) Compute $\vec{E} = -\vec{V}(\vec{r})$ for $V(r,\theta,\phi) = A r^{-2} \cos\theta$ in Cartesian coordinates.
- X2.) Compute the electrostatic potential due to a uniformly charged spherical shell. Let be the uniform surface charge density and R be the radius of the shell. Find $V(\vec{r})$ for points inside and outside the shell.
- X3.) Give values for:

$$\varepsilon_{2431} =$$

$${\overset{3}{\delta_{i\,j}}}\,\,{\epsilon_{mi\,j}}=$$

$${}^3_{j=1}\delta_{i\,j}\,\delta_{j\,m}=$$

$$\varepsilon_{2431765} \ \varepsilon_{2431756} =$$